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The Boltzmann equation describing electron flow in semiconductor devices is con-
sidered. The collision operator models the scattering processes between free electrons
and phonons in thermal equilibrium. The doping profile and the self-consistent elec-
tric field are related by the Poisson equation. The coupled systemis solved by using a
simple numerical scheme based on finite differences. Hydrodynamical variables are
obtained by integrating the distribution function. Numerical results are shown for a
one-dimensionah* — n — n* silicon diode. @ 2001 Eisevier Science
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1. INTRODUCTION

The Boltzmann transport equation (BTE) describes electron transport in semicondu
devices. Solving it hnumerically is not an easy task, because the BTE is an integro—differet
equation with six dimensions in the phase space and one in time. Actually, one of
most popular methods of modeling charge transport in such devices is the Monte C
method [4, 6, 10]. However, resolution of strong transients and an accurate descrip
of the tail of the distribution function require an intractable number of particles to obta
good results. Moreover, it is also difficult to examine unsteady systems with Monte Ca
methods.

An alternative approach to the Monte Carlo method was proposed by Fatemi and O
[5]- They analyzed the exact BTE and developed a finite-difference scheme for solving
Boltzmann—Poisson system. Their interesting paper shows that a finite-difference sch
for solving this system is viable. This is possible also because the collision operato
simpler than the classical Boltzmann operator for perfect rarefied gas [3], where the f
dimensional manifold of the integrals suggests stochastic algorithms.
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In this paper we follow the main idea of [5], but a new numerical algorithm is proposed.
order to make clear the difference between the two schemes, we consider it useful to re
briefly some features of the Fatemi and Odeh [5] scheme. They used a spherical coordi
system for the wave-vect&rand an upwind scheme to discretize the differential termsin th
BTE. The spherical coordinates simplify the treatment of the collision operator but introdt
a singularity in the free streaming operator. Since the transformed BTE is not definec
k=0, in order to avoid overflow in the numerical calculations a small neighborhood of tl
origin is removed from thé& domain. This requires an additional non-physical boundar
condition on the surface of this small region. In any case, when spherical coordinates
used, the origin of the Cartesian system is mapped into a rectangle and a new boun
condition is required. Moreover, in order to have a bounkleibmain, a parametenkx
is suitably set and only the regidhk| < knax is considered. This new boundary requires
again an additional condition, which must take into account the behavior of the distributi
function for large values gk| and the mass conservation law. Fatemi and Odeh [5] achieve
this by also defining a modified collision operator directly in the discretized equatior
Another small modification was performed on the collision operator of the BTE since
contains the Dirac distribution. In order to regularize this operator, a smooth function w
used to replace th& function. Consequently, the integral operator becomes compact a
the mathematical and numerical treatment is simpler. Trouble arises because of the u:
a smooth continuous function having compact support instead &ffilnection. In fact, a
small compact support gives a good approximation ofthenction but requires many grid
points to ensure a good numerical discretization. On the other hand, a large support g
a dual situation. Therefore a careful but not trivial compromise was needed.

We develop a new scheme still based on spherical coordinates for the wave vector
finite differences to discretize partial and integral operators. The use of a hew unkno
instead of the distribution function, allows us to automatically eliminate the singularity
the free streaming operator and to give the exact boundary condition corresponding tc
origin of thek space.

We use a different approach for the treatment of the spatial coordireatd the wave-
vectork. In fact we use the box method to discretize the BTE inktBpace, and we use the
upwind method in the& space. This choice arises from physical considerations and will k
clearly explained later.

Before performing the numerical discretization, we introduce an upper bourkl far
the kernel of the collision operator of the exact BTE. This modification still guarantees m:
conservation. Moreover, we keep the Dirac distribution inside the collision operator.

The plan of the paper is as follows. In Section 2 we describe the main features of the mc
equations. The energy band structure is modeled assuming the Kane model instead c
parabolic band approximation used by Fatemi and Odeh [5]. In Section 3 the dimension
equations are derived. In Section 4 we describe our numerical scheme. Finally, in Secti
we show the results of a test problem and in Section 6 draw conclusions.

2. BASIC EQUATIONS

We consider an electron gas, which interacts with a bath of phonons assumed to b
thermal equilibrium. In this case the Boltzmann equation is [6, 9]

4
S pVke s Vel — LB Vief = Q(). (1)
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The unknownf is the electron distribution function, which depends on timepace
coordinatex, and wave-vectok. The parameterBande are the Planck constant divided
by 27 and the positive electric charge, respectively. The symBgland Vy stand for the
gradient with respect to the variablgsandk, respectively. The particle energyis an
assigned nonnegative continuous function. If the Kane model is assumed, then

1 hd
- — |k[?,
1+4/1+25n2 k2™

wherem* is the effective mass arnd$ the nonparabolicity factor. The widely used parabolic
approximation is obtained from Eg. (2) by setting="0. We adopt Eq. (2) because it
gives a more realistic description of the electron band structure than the parabolic ap
ximation.

In Eq. (1) the electric field satisfies the Poisson equation

e(k) =

)

AV = £[n, %) = No (], @3)
E=—V,V, (4)

wheree is the permittivity,n(t, x) = j;“3 f (t, x, k) dk is the electron densit\p (X) is the
doping, andV is the electric potential. Equations (1), (3), and (4) give the Boltzmanr
Poisson system.

We follow a semiclassical approach for the collision tepitf ), so that, in the low-density
regime, itis

Q(f)(t, x, k) = / [SKK, k) f(t,x, K) — Sk, K)f(t,x, k)] dk. 5)
]RS

The kernelS, which takes into account the scattering processes between electrons
phonons, is defined by

Sk, k) = Ko(k, kK)8(e(K) — (k) + K(k, k)
x [(ng + D3(e(K) — e(k) + hw) + ngd(e(K) — e(k) — hw)]. (6)

The constanityg is the occupation number of phonons and is given by

h 71
[6)]
Ng = [exp(kBTL> - } ,

wherew is the constant phonon frequenky,is the Boltzmann constant, aiid is the lattice
temperature. The symbélindicates the usual Dirac distribution. This is composed witl
the functione (k). The mathematical meaning of the new distribution funcé@(k’) —
e(k) & hw) is analyzed in [8].

The domain of the wave-vector is tfie space. In order to eliminate this difficulty in
the numerical calculations, one usually repla@ésvith a bounded domain. Fix a positive
integerI\T, and the new domain of the wave-vector is

D={keR3: ¢k) < Nho).
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Following [7] we modifyQ( f ) by multiplying the kernels—, andK —by the step function

1 ifmaxXe, &'} < N ho
0 otherwise

C(e(k), e(k)) = { (7)

It is worthwhile to point out that it is possible, by using standard techniques, to prove th

/ Q(f)(t,x, kydk =0,
D

for every admissible . This implies the mass conservation, assuming the boundary con
tion

f(t,x,k)=0 8)

for every(t, x, k) such thak (k) = Nhw.
The cut in the kernels means physically that an electron has zero probability of collidi
in the following two cases:

e The electron, before the collision, has an energy lesshtan, but after has an energy
equal to or greater thaN hw. _
e The electron, before the collision, has an energy greater than or egN&hto

This means that the number of all the electrons having energy less\thandoes not
change as an effect of collisions. The boundary condition Eg. (8) guarantees that the en
of a particle cannot exceed the threshbltiw due to the electric field.

3. DIMENSIONLESS EQUATIONS

It is useful to introduce dimensionless equations. Now we use the coordinate trans
mation

~/mekgT .
k:ﬁ%ﬂ\/l+a.<w(\/l—u2cos¢,\/1—/¢25|n¢,u), 9)
whereax = kg T & andw is a dimensionless energy.

Equation (9) is equivalent to the spherical coordinate transformation when the parab
band approximation is used. The main advantage of the new coordinates is the easy treat
of thes function. In fact, it is simple to check that

& = kBTL w,
so that the integrals with respect #oin the collision operator can be solved exactly by
using the properties of thefunction.

The Jacobian of the transformatikn— (w, ¢, u) is

1 (Zm*kBTL

3/2
> = ) Vw4 akw)(d+ 2akw).
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Let K, be a dimensional constant parameter ofghme ordesas the kerneK . Now, we
define dimensionless quantities. In order to simplify the notation in the rest of the pay
here we put a tilde over the dimensional variables. Let

h n 1
@ qTatd_

“= . e,

Kk K) = K.K(& ¢, Ko(k, K) = K.ngKo(&, &),

t, = {4~/§nka*/m_*\/ﬁan*} _1, L = kanIL t..

f=t,t, % = v/2,x,

Np (%) = <7Vz"?‘BTL>3ND<x), Cp = ZTﬁ zlfm*f\/ﬁ,
Et,x) = ﬁkEITL (B, %), B2, %), EE, %), V(t,x) = 2kE‘eTL v, %),

where¢ = (w, ¢, ). Herezis the spatial coordinate arnds the dimensionless time.

In the following we will see that an appropriate choicekof makest, andl, of the
same order of magnitude as the characteristic time scale and length of the semicondt
respectively.

In terms of the new variables, the unknovinis denoted byF. Since we are looking
for a solution of the BTE, which depends only on one spatial coordinate, we simply wr
F(t, z, w, u). It is obvious that the electric potential depends onlyt amndz. The angular
coordinatep disappears, due to the symmetry of the problem.

Let

D, z,w, u) =s(w)F(t, z, w, n). (20)

The function® will be the new unknown. Since the functi@w) is proportional to the
Jacobian of the coordinate transformation, we can evaluate moments of the distribu
function, as density or momentum, usisgdirectly. In fact, as an example, the density of
the gas is given, apart from a dimensional factor, by

1 21 +o0 1
—/ dd)/ dw/ dud(t, z, w, u).
2 Jo 0 1

We are interested in solving the Boltzmann—Poisson system in the case of a silicon dey
The appropriate kernelk andKg are then constant (see Appendix A for the numerica
data). Now, we can choos€, such that

K=1 and Koq=p~5.986

Thent, >~ 3.6 ps and, ~ 0.43um.
It follows that the collisional operator becomes

1
QU)K = tl{;/ [BO, 2w, 1)+ ad(t, 2w+ a, 1) + B(t, 2w — o, )] di’
* -1

—i[ﬁs(u))—i-as(w —a) + S(w + a)]P(, z, w,u)}; (11)
s(w)
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the forcing term is

E 2/L«/LU(1+O(KU))8( P )+ 1—pu? 0]
t, A+ 20xw) ow \ s(w) w4 akw) L+ 2ok w) dp |’

e
_E.Vf = —
n k

and, finally, the convective term is

1oe of 1 w 9D
hoks dxz t, (1+2akw)2 9z’

whereks is the third component df, and x3 is the third component aft. The Poisson
equation is now

82‘-11 +00 1
— = —Cp ND(Z)—JT/ dw/ du ®(t,z, w, w)|.
072 0 -1
The domains of the variables are
ze[0, L], wel0,wnad, mel[-11],

whereL is the dimensionless length of the device anghy = N he is the maximum value
of the energy, which is adjusted in the numerical experiments such that

Fit,z,w,u) >0 forw > wnmay foreveryt, z, u.

Of course we modify Eq. (11) taking into account the cut described previously.

4. NUMERICAL SCHEME

We perform, as the first step, the discretization onlyiandu. Let Aw andAp denote
the constant step sizes. The presence of thmction requires us to assume thatAw is
an integer in order to treat the shifted terdé, z, w + «, 1) correctly. The grid points in
thew — u space are

wi=i-Aw, puj=-1+j-Au, i,j=01,2....

For each interior pointw;, uj) we consider the rectanglg; = [wi_1, wit1] x [1j-1,
wj+1]. Now, we multiply both sides of the BTE I3(w) and integrate with respect toand
w on Rij. An easy computation shows that the following equation is obtained.

ad Jwld+akw) 0P
=z ® NIRRT
ot //R,- (t,z, w, u) dw d,u—i—/Rij T+ 200 w) ,uaz dw du

Hij+1 /U)(l-}-Ole) :|wi+1
—E(t,z / d {2 —®(t, Zz, w,
( ){ - M2 20 w) ( ) .

Wiyl 1— 2 MHi+1
+/ dw[iu @(t,z,w,u)]
Wj-1 Vw(1+aKw) MHj-1
Wi+1 1
= A/L/ dw/ du[Bo,z, w, n) +adt,z, w+a, u) + O, z, w — a, n)]s(w)
Wj-1 -1

— / [Bs(w) + as(w — «) + s(w + )] P(t, z, w, u) dw dpu. (12)
Rij
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The cut in the collision operator simply implies that in Eq. (12) we must deijimé = 0
if wé¢ (0, wnay and setd(t, z, w, u) = 0 if w > wmax for every(t, z, u). We notice that
integration by parts in the forcing term gives one-dimensional integrals. We remark t|
Eqg. (12) contains only a term, which is singular for= 0, but it is integrable.

This approach is usually called a box scheme. The integrals in Eq. (12) are numeric
approximated by using quadrature formulas. For the first term in Eqg. (12) one can sim
use

// O,z w, w)dw dp =~ 4AwARD(E, Z, wi, uj).
Ri

For the other integrals the Simpson rule is applied, except for the integral

2Aw 2 Hj+1
1_
/ {MCD(LZ, w, L) dw,
0 Vw4 akw) fict

where a parabolic interpolation for the functidnt, z, w, u)/+/1 + axw is used because
of the singularity.

The values ofb on the boundary of the& — u domain are determined as follows. We
have

d(t,z,0,u) =0 foreveryt,z, u)
due to the definition o® (Eq. (10)), and
D, Z, wmax ) = 0 for every(t, z, u)

due to the boundary condition Eg. (8).
The values ofd for u = 41 are easily obtained by the relations

O,z w,l) =,z w,1—Aun)
O, z,w, 1) =dM,z, w, -1+ Ap)

for every ¢, z, w). We choose the same boundary conditions for the inflow and outflow «
electrons as in [5]; i.e.,

%(t,o, w,u)=0 ifu>0, %(t, Lw,u=0 ifu<A0,
for everyt andw.

At this stage we have a large system of partial differential equatioriszh The nature
of the BTE would make the previous system hyperbolic, but we do not prove it. So class
difference schemes for the advection equation can be applied. We use the upwind met
as in [5]. We remark that, for each (), Eq. (12) gives an equation which contains nine
partial derivatives with respect & due to the two-dimensional Simpson rule.

The ordinary differential equations obtained after the spatial discretization are soh
using standard predictor—corrector schemes. Our numerical experiments suggest th
of high order (four or five) formulas. The initial condition fdr is a local Maxwellian
distribution (see Appendix A).

The Poisson equation is solved formally. The numerical scheme giving an approximai
of the solution is described in Appendix B. It differs from the standard scheme becal
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in this way it is possible to use grid points not equally distributed. The solution of tf
Poisson equation is performed at each step of the predictor—corrector iteration, resemt
afrozen-in-timeelectric field.

5. NUMERICAL RESULTS

We choose th@™ — n — n™" silicon diode as a test problem. The doping densities an
the length of the regions are

Np(z) =5-10"cm™3 for 0<z<0.3 (um) and 07 <z<1 (um)
Np(z) = 2-10° cm™3 for 0.3 <z < 0.7 (um).

We used avhias = 1V and the same constants as in [1].

For the discretization of the variablesz, w, u we used the following values. Farwe
have both equally and unequally spaced grid points. In the first case, a cell has a lengt
L/Nz, whereL =1 um is the length of our device and, is the number of cells of the
discretization. We usel, = 512 256, and 128. In the case of a grid not equally spaced w
haveN, = 180 but distributed in this way: 15 cells for each interval [0, 0.25] and [0.75, 1
40 cells for [0.25, 0.35] and [0.65, 0.75], and 70 cells for [0.35, 0.65].

For the discretization ofv and 1 we haveAw = /4 and Au = 1/15. Finally, the
number of time-steps per picosecond varies from 300 to 560 depending on the minim
value of the length of the cells.

We perform some numerical experiments to see the influenceleftgthof the junctions.
The simplest case but the most unrealistic one is to use the step function. The second

S5e+17 T ~—; T T — T

4.5¢+17 |

t
40+17 | !

3.50+17 - i i -

3e+17 b

2.5e+17 |- T

20+17 - ' -

1.56417 |- ; : .

1e+17 -

5e+16 -
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I

0 L | ;
0 0.2 0.4 0.6 0.8 1

FIG. 1. Doping density profile for the three cases. Fatemi and Odeh [5]: continuous line; ekrale[2]:
dashed line; step function: dot-dash line.
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FIG. 2. Velocity fort =1 ps,N, = 512, and three doping profiles: Fatemi and Odeh [5]: continuous line
Anile et al. [2]: dashed line; step function: dot-dash line.

40 T T T T
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) ! I I 1
0 0.2 0.4 0.6 0.8 1

FIG. 3. Electricfield fort = 1 ps,N, = 512, and three doping profiles: Fatemi and Odeh [5]: continuous line
Anile et al. [2]: dashed line; step function: dot-dash line.
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FIG.5. Electric field fort = 1 ps andN, = 512: continuous line; 256: dot-dash line; 128: dashed line.
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FIG. 6. Velocity fort = 1 ps andN, = 512: continuous line; 180: triangles.
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FIG.7. Velocity fort = 5 ps,N, = 512 for three doping profiles: Fatemi and Odeh [5]: continuous line; Anile
et al.: dashed line; step function: dot-dash line.
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FIG. 8. Electric field fort = 5 ps andN, = 512 for three doping profiles: Fatemi and Odeh [5]: continuous
line; Anile et al.: dashed line; step function: dot-dash line.
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FIG. 9. Density fort =5 ps andN, = 512.
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FIG. 10. Velocity fort =5 ps andN, = 512: continuous line; 180: triangles.
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FIG.11. Momentum fort = 5 ps andN, = 512: continuous line; 180: triangles.
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FIG. 14. Distribution function fort = 5 ps ate =2 hw.

we considered is a doping profile regularized according to the function [2]

Np(0) — d0<tanhz_sZl - tanhz_szz>,

wheredy = [Np(0) — Np(0.5)]/2, zz = 0.3 um, z, = 0.7 um, and the parametes =
0.01 um. The third case is that of Fatemi and Odeh [5], where the profile is regulariz
with a seven-degree polynomial. Figure 1 shows three different doping profiles using <
function, hyperbolic function, and piecewise polynomial.

The units used in the figures are the following: lengthum, velocity in 1¢ m s2,
electric field in V n11, electric potential in kV, density in cni, and energy irfiw. In
Figs. 2 and 3 we see the effect of the three different doping profiles for velocity a

X

2z
2SS -y S
\ SORCGREES TS 258 2052 2>
VOO QLSRR Z22oL o822t ST
N S S e 22
222252 o222
22225

%

FIG. 15. Distribution function fort = 5 ps atz = 0.2 um.
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2T TS
S
A
2>

FIG. 16. Distribution function fort = 5 ps atz = 0.3 um.

electric field in the transient (we chose= 1 ps). We notice that the step function gives
irregular profiles, while the other profiles give more regular results in the other cases
Figs. 4 and 5 the influence of the number of cells is analyzed. We see that the nonphy:
behavior near the first junction is numerical and it goes away with a finer discretizatic
Figure 6 suggests that it is possible to optimize the code using an irregular mesh v
more points near the junctions but fewer points in the regular regions. Figures 7—17 re
to the numerical stationary case=t 5 ps). Figures 7 and 8 show that the behavior is the
same as in the transient, giving irregularities with the use of a step function. Figures 9-
show density, velocity, momentum, electric field, and potential in the stationary case.

SEL LIRS 2EZE
2SS TTRAE
-.-' S 2 Z 4 A
2582522582522 252272 1
2% 2o 7
ZoT2>

FIG. 17. Distribution function fort = 5 ps atz = 0.5 um.
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Figs. 10 and 11 we plot results with a regul&t, (= 512) and an irregularN; = 180)
mesh, showing nearly no difference between the two discretizations. In the other ca
the two discretizations give the same results. We notice that the velocity, which is gre:
than the saturation velocity in the transient (Fig. 6), has a lower value in the stationary c
(Fig. 10). Momentum is regular (Fig. 11), although there is a small residual error near
junctions.

To see the behavior of the distribution functidnwe plot it for a fixed energys(= 2 hw)
(Fig. 14) and for three fixed Fig. 15 atz = 0.2 um, Fig. 16 az = 0.3 um, and Fig. 17 at
z = 0.5 um. We notice that, in all the cases and even in the junctions, the function mainta
a regular shape. The use of the box method allowed us to adopt high order formulas,
Simpson’s rule, to solve integrals. This means that we can use very few pointanid ..
Moreover, we were able to obtain regular solutions even with nonsmooth profiles in dopi
such as the step function.

6. CONCLUDING REMARKS

One advantage of the scheme used to solve the BTE is that it is possible to cons
a collisional operator more complex than (5). We show some possible cases. In orde
make our arguments clear, we recall that the finite-difference approximation to the BTE
achieved in two steps. The first concernskhariables and consists in integrating Eq. (1),
after a change of variables, over a small domairk sfpace (see Eq. (12)). In terms of
dimensional variables these domains are

Qij ={keR¥*wi_1 <w < w1, pj-1 < k< pj1, 0< ¢ <21},

wherew, u, ¢ are related td by Eq. (9). Using the original dimensional variablesve
obtain the equation

of 1 e "
— 4+ —Vke - Vi f — —E - Vi f|dk = f)dk. 13
/Qi[at+hk8 X h k} QijQ() (13)

This equation, after the transformation (9), gives Eq. (12). Let us analyze the right-hand :

of Eq. (13). If xij(k) denotes the characteristic function of the s®f, then
we have

AN x k= [ QUht.x bk dk

Qijj

:/ / S(k/,k)f(t,x,k’)dk’]Xi,—(k)dk—/ [/ S(k,k’)f(t,x,k)dk’]Xi,—(k)dk
RS L JRS RS L JR®

=/ / Sk, k)Xij(k)dk] f(t, X, k/)dk/—/ [/ Sk, k’)dk’} f(t, x, k)Xij(k)dk
RS LJR® RS LJR®

= / / SK, k)dk} f(t,x, k/)dk'—/ [/ S(k, k’)dk’} f(t, x, k) dk.
JRS [ Qi Qj RS

Now, it is clear that we can evaluate the integrals

Stk Kydk  and / s(k, Ky dK, (14)
]R3

Qij
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independently of the unknowi. Of course, we must calculate the integrals in Eq. (14
only for values ofk which correspond to grid points inu( ©)-space. Therefore, scat-
tering kernels more complex than (6) can be considered. For example, the transi
probability of an electron from state to statek’ can include all the possible phonon
states; i.e., the phonon frequency does not have to be constant. Integrals (14) can be
roximated numerically, but in this case, it is necessary to evaluate the second integral,
sidering the whole spadg® as the union of2j; domains ( and j odd), and then using
the same formulas as in the first integral (14). This guarantees that the mass conserv
holds.

Another problem concerns the possibility of including the Pauli exclusion principle in tt
collision operator. This is important for high-density electron gas. In the case of const
phonon frequency, the inclusion of a{1f) term intoQ( f) gives a nonlinear collisional
integral instead of Eq. (11), but the numerical scheme is able to take this new situation i
account. It is simple to imagine the new form of Eq. (12). The possibility of also includin
complex scattering kernels is not obvious, and it is evident that the arguments given ak
in this section are not applicable.

Itis also reasonable that itis not possible to include the full collisional operator describi
the electron—electron interaction, because of the five-dimensional integrals. The treatn
of this operator, in fact, usually requires Monte Carlo algorithms instead of finite differen
formulas. A possible way to overcome this difficulty is to consider a BGK collisione
operator (relaxation model) (see, e.g., [3]) to describe carrier—carrier scattering. Toward
aim it is necessary to choose a suitable relaxation time (usually depending on the elec
energy).

The second step of the finite-difference approximation concerng-tregiable. This
point is important for the simulation of 2D devices. The dimension of the problem i
creases by one, since we need only an additional spatial coordinate. Our experiment
a 1D diode indicate that a reasonable small number of grid points jm)-space are
needed. Then, simulations of 2D problems are related to a realistic spatial grid that is
too fine.

We want to point out that this work is a first attempt at a robust and efficient code to so!
the BTE. Our future work will consider two different issues, again in the framework of 1
simulations. One is that of improving the numerical accuracy, for example, by using a higl
order scheme for the discretization of spatial derivatives. Another issue is the improverr
of the grid discretization by using, for example, adaptive mesh refinement algorithms. |
think these improvements are necessary before attempting 2D device simulations.

APPENDIX A

Initial Conditions
The initial value of® is a locally Maxwellian distribution at the temperature

+00 -1
(0, z, w, ) =s(w)Np(2)e™™ [271 / s(w)e™™ dw} ,
0

so that the initial value for the density is equal to doping.
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Numerical Values

We used the quantities

hw = 0.063 eV T, =300 K°
& =05 eV)? po = 2330 Kgnt®
€0 = 8.85419- 10 2 Fm?t e =117 ¢

m, = 0.32-mg u = 9040 ms?

Dik = 114100 eV m Eac =9 eV
K= Dtkz/(87'r2p0a)) Ko = kBTL Egc/ (47Thu|2p0)
o = 2.43694 a=11438
B = 5.986 K, = 1.89405. 103,

ng = 0.0958036

wheremy is the electron masgy is the crystal densityk is the optical coupling constant,
u; is the sound velocity, anB,. is the deformation potential.

APPENDIX B

Poisson Equation

The exact solution of the Poisson equation is easily obtained by solving

{W=mm
y(@) = Ya, Y(b) = ¥p.
We obtain
X —a b X
y¥) =vYat+ i — {Yb —VYa —/ (b—t)g(t)dt} +/ (x —Dg() dt
and

1 b X
y'(x) = b_a {yb —Ya— / (b—t)g(t) dt} +/ g(t) dt.

The integrals are approximated using the trapezoidal rule.
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